Métricas
Minerva proporciona clases para evaluar el rendimiento de modelos de machine learning.
Uso Básico
Example.java
1
2
3
4
5
6
7
8
9
10
11
12
13
import com.minerva.core.primitives.Vector;import com.minerva.metrics.RegressionMetrics.RegressionMetrics;import com.minerva.models.regression.impl.LinearRegression; // Entrenar modeloLinearRegression model = new LinearRegression();model.fit(X, y);Vector yPred = model.predict(X); // Calcular métricasRegressionMetrics metrics = new RegressionMetrics();double r2 = metrics.R2(y, yPred);double rmse = metrics.RMSE(y, yPred);Métricas Disponibles
Regresión
| Método | Descripción | Rango | Mejor |
|---|---|---|---|
MAE | Mean Absolute Error | [0, ∞) | 0 |
MSE | Mean Squared Error | [0, ∞) | 0 |
RMSE | Root Mean Squared Error | [0, ∞) | 0 |
R2 | Coeficiente de Determinación | (-∞, 1] | 1 |
R2adj | R² Ajustado | (-∞, 1] | 1 |
MAPE | Mean Absolute Percentage Error | [0, ∞) | 0 |